A-2

Appendix A Instruction Set Principles

Al

Introduction

In this appendix we concentrate on instruction set architecture—the portion of the
computer visible to the programmer or compiler writer. Most of this material
should be review for readers of this book; we include it here for background. This
appendix introduces the wide variety of design alternatives available to the instruc-
tion set architect. In particular, we focus on four topics. First, we present a taxon-
omy of instruction set alternatives and give some qualitative assessment of the
advantages and disadvantages of various approaches. Second, we present and ana-
lyze some instruction set measurements that are largely independent of a specific
instruction set. Third, we address the issue of languages and compilers and their
bearing on instruction set architecture. Finally, the “Putting It All Together” section
shows how these ideas are reflected in the MIPS instruction set, which is typical of
RISC architectures. We conclude with fallacies and pitfalls of instruction set
design.

To illustrate the principles further, Appendix K also gives four examples of
general-purpose RISC architectures (MIPS, PowerPC, Precision Architecture,
SPARC), four embedded RISC processors (ARM, Hitachi SH, MIPS 16, Thumb),
and three older architectures (80x86, IBM 360/370, and VAX). Before we discuss
how to classify architectures, we need to say something about instruction set mea-
surement.

Throughout this appendix, we examine a wide variety of architectural mea-
surements. Clearly, these measurements depend on the programs measured and
on the compilers used in making the measurements. The results should not be
interpreted as absolute, and you might see different data if you did the measure-
ment with a different compiler or a different set of programs. We believe that the
measurements in this appendix are reasonably indicative of a class of typical
applications. Many of the measurements are presented using a small set of bench-
marks, so that the data can be reasonably displayed and the differences among
programs can be seen. An architect for a new computer would want to analyze a
much larger collection of programs before making architectural decisions. The
measurements shown are usually dynamic—that is, the frequency of a measured
event is weighed by the number of times that event occurs during execution of
the measured program.

Before starting with the general principles, let’s review the three application
areas from Chapter 1. Desktop computing emphasizes the performance of pro-
grams with integer and floating-point data types, with little regard for program
size. For example, code size has never been reported in the five generations of
SPEC benchmarks. Servers today are used primarily for database, file server, and
Web applications, plus some time-sharing applications for many users. Hence,
floating-point performance is much less important for performance than integers
and character strings, yet virtually every server processor still includes floating-
point instructions. Personal mobile devices and embedded applications value cost
and energy, so code size is important because less memory is both cheaper and
lower energy, and some classes of instructions (such as floating point) may be
optional to reduce chip costs.

A.2

A.2 Classifying Instruction Set Architectures A-3

Thus, instruction sets for all three applications are very similar. In fact, the
MIPS architecture that drives this appendix has been used successfully in desk-
tops, servers, and embedded applications.

One successful architecture very different from RISC is the 80x86 (see
Appendix K). Surprisingly, its success does not necessarily belie the advantages
of a RISC instruction set. The commercial importance of binary compatibility
with PC software combined with the abundance of transistors provided by
Moore’s law led Intel to use a RISC instruction set internally while supporting an
80x86 instruction set externally. Recent 80x86 microprocessors, such as the Pen-
tium 4, use hardware to translate from 80x86 instructions to RISC-like instruc-
tions and then execute the translated operations inside the chip. They maintain
the illusion of 80x86 architecture to the programmer while allowing the computer
designer to implement a RISC-style processor for performance.

Now that the background is set, we begin by exploring how instruction set
architectures can be classified.

Classifying Instruction Set Architectures

The type of internal storage in a processor is the most basic differentiation, so in
this section we will focus on the alternatives for this portion of the architecture.
The major choices are a stack, an accumulator, or a set of registers. Operands
may be named explicitly or implicitly: The operands in a stack architecture are
implicitly on the top of the stack, and in an accumulator architecture one operand
is implicitly the accumulator. The general-purpose register architectures have
only explicit operands—either registers or memory locations. Figure A.1 shows a
block diagram of such architectures, and Figure A.2 shows how the code
sequence C = A + B would typically appear in these three classes of instruction
sets. The explicit operands may be accessed directly from memory or may need
to be first loaded into temporary storage, depending on the class of architecture
and choice of specific instruction.

As the figures show, there are really two classes of register computers. One
class can access memory as part of any instruction, called register-memory archi-
tecture, and the other can access memory only with load and store instructions,
called load-store architecture. A third class, not found in computers shipping
today, keeps all operands in memory and is called a memory-memory architec-
ture. Some instruction set architectures have more registers than a single accumu-
lator but place restrictions on uses of these special registers. Such an architecture
is sometimes called an extended accumulator or special-purpose register com-
puter.

Although most early computers used stack or accumulator-style architectures,
virtually every new architecture designed after 1980 uses a load-store register
architecture. The major reasons for the emergence of general-purpose register
(GPR) computers are twofold. First, registers—Ilike other forms of storage inter-
nal to the processor—are faster than memory. Second, registers are more efficient

A-4 Appendix A Instruction Set Principles

Processor

(a) Stack (b) Accumulator (c) Register-memory (d) Register-register/
load-store

Figure A.1 Operand locations for four instruction set architecture classes. The arrows indicate whether the oper-
and is an input or the result of the arithmetic-logical unit (ALU) operation, or both an input and result. Lighter shades
indicate inputs, and the dark shade indicates the result. In (a), a Top Of Stack register (TOS) points to the top input
operand, which is combined with the operand below. The first operand is removed from the stack, the result takes
the place of the second operand, and TOS is updated to point to the result. All operands are implicit. In (b), the Accu-
mulator is both an implicit input operand and a result. In (c), one input operand is a register, one is in memory, and
the result goes to a register. All operands are registers in (d) and, like the stack architecture, can be transferred to
memory only via separate instructions: push or pop for (a) and load or store for (d).

Register
Stack Accumulator (register-memory) Register (load-store)
Push A Load A Load R1,A Load R1,A
Push B Add B Add R3,R1,B Load R2,B
Add Store C Store R3,C Add R3,R1,R2
Pop C Store R3,C

Figure A.2 The code sequence for C = A + B for four classes of instruction sets. Note
that the Add instruction has implicit operands for stack and accumulator architectures
and explicit operands for register architectures. It is assumed that A, B, and C all belong
in memory and that the values of A and B cannot be destroyed. Figure A.1 shows the
Add operation for each class of architecture.

A.2 Classitying Instruction Set Architectures A-5

for a compiler to use than other forms of internal storage. For example, on a reg-
ister computer the expression (A * B) — (B = C) — (A * D) may be evaluated
by doing the multiplications in any order, which may be more efficient because
of the location of the operands or because of pipelining concerns (see Chapter 3).
Nevertheless, on a stack computer the hardware must evaluate the expression in
only one order, since operands are hidden on the stack, and it may have to load an
operand multiple times.

More importantly, registers can be used to hold variables. When variables are
allocated to registers, the memory traffic reduces, the program speeds up (since
registers are faster than memory), and the code density improves (since a register
can be named with fewer bits than can a memory location).

As explained in Section A.8, compiler writers would prefer that all registers
be equivalent and unreserved. Older computers compromise this desire by dedi-
cating registers to special uses, effectively decreasing the number of general-
purpose registers. If the number of truly general-purpose registers is too small,
trying to allocate variables to registers will not be profitable. Instead, the com-
piler will reserve all the uncommitted registers for use in expression evaluation.

How many registers are sufficient? The answer, of course, depends on the
effectiveness of the compiler. Most compilers reserve some registers for expres-
sion evaluation, use some for parameter passing, and allow the remainder to be
allocated to hold variables. Modern compiler technology and its ability to effec-
tively use larger numbers of registers has led to an increase in register counts in
more recent architectures.

Two major instruction set characteristics divide GPR architectures. Both char-
acteristics concern the nature of operands for a typical arithmetic or logical
instruction (ALU instruction). The first concerns whether an ALU instruction has
two or three operands. In the three-operand format, the instruction contains one
result operand and two source operands. In the two-operand format, one of the
operands is both a source and a result for the operation. The second distinction
among GPR architectures concerns how many of the operands may be memory
addresses in ALU instructions. The number of memory operands supported by a
typical ALU instruction may vary from none to three. Figure A.3 shows combina-
tions of these two attributes with examples of computers. Although there are
seven possible combinations, three serve to classify nearly all existing computers.
As we mentioned earlier, these three are load-store (also called register-register),
register-memory, and memory-memory.

Figure A.4 shows the advantages and disadvantages of each of these alterna-
tives. Of course, these advantages and disadvantages are not absolutes: They are
qualitative and their actual impact depends on the compiler and implementation
strategy. A GPR computer with memory-memory operations could easily be
ignored by the compiler and used as a load-store computer. One of the most per-
vasive architectural impacts is on instruction encoding and the number of instruc-
tions needed to perform a task. We see the impact of these architectural
alternatives on implementation approaches in Appendix C and Chapter 3.

A-6 Appendix A Instruction Set Principles

Number of Maximum number
memory of operands
addresses allowed Type of architecture Examples
0 3 Load-store Alpha, ARM, MIPS, PowerPC, SPARC, SuperH,
T™32
1 2 Register-memory IBM 360/370, Intel 80x86, Motorola 68000,
TI TMS320C54x
2 2 Memory-memory VAX (also has three-operand formats)
Memory-memory VAX (also has two-operand formats)

Figure A.3 Typical combinations of memory operands and total operands per typical ALU instruction with
examples of computers. Computers with no memory reference per ALU instruction are called load-store or register-
register computers. Instructions with multiple memory operands per typical ALU instruction are called register-
memory or memory-memory, according to whether they have one or more than one memory operand.

Type Advantages Disadvantages

Register-register ~ Simple, fixed-length instruction encoding. Higher instruction count than architectures with

0, 3) Simple code generation model. Instructions memory references in instructions. More instructions
take similar numbers of clocks to execute and lower instruction density lead to larger
(see Appendix C). programs.

Register-memory Data can be accessed without a separate load Operands are not equivalent since a source operand
(1,2) instruction first. Instruction format tends to in a binary operation is destroyed. Encoding a
be easy to encode and yields good density. register number and a memory address in each
instruction may restrict the number of registers.
Clocks per instruction vary by operand location.

Memory-memory Most compact. Doesn’t waste registers for Large variation in instruction size, especially for

(2,2)0r(3,3) temporaries. three-operand instructions. In addition, large
variation in work per instruction. Memory accesses
create memory bottleneck. (Not used today.)

Figure A.4 Advantages and disadvantages of the three most common types of general-purpose register com-
puters. The notation (m, n) means m memory operands and n total operands. In general, computers with fewer alter-
natives simplify the compiler’s task since there are fewer decisions for the compiler to make (see Section A.8).
Computers with a wide variety of flexible instruction formats reduce the number of bits required to encode the pro-
gram. The number of registers also affects the instruction size since you need log, (number of registers) for each reg-
ister specifier in an instruction. Thus, doubling the number of registers takes 3 extra bits for a register-register
architecture, or about 10% of a 32-bit instruction.

Summary: Classifying Instruction Set Architectures

Here and at the end of Sections A.3 through A.8 we summarize those characteris-
tics we would expect to find in a new instruction set architecture, building the
foundation for the MIPS architecture introduced in Section A.9. From this sec-
tion we should clearly expect the use of general-purpose registers. Figure A.4,

A3

A.3 Memory Addressing A-7

combined with Appendix C on pipelining, leads to the expectation of a load-store
version of a general-purpose register architecture.
With the class of architecture covered, the next topic is addressing operands.

Memory Addressing

Independent of whether the architecture is load-store or allows any operand to be
a memory reference, it must define how memory addresses are interpreted and
how they are specified. The measurements presented here are largely, but not
completely, computer independent. In some cases the measurements are signifi-
cantly affected by the compiler technology. These measurements have been made
using an optimizing compiler, since compiler technology plays a critical role.

Interpreting Memory Addresses

How is a memory address interpreted? That is, what object is accessed as a
function of the address and the length? All the instruction sets discussed in this
book are byte addressed and provide access for bytes (8 bits), half words (16 bits),
and words (32 bits). Most of the computers also provide access for double words
(64 bits).

There are two different conventions for ordering the bytes within a larger
object. Little Endian byte order puts the byte whose address is “x . . . x000” at
the least-significant position in the double word (the little end). The bytes are
numbered:

7 6 5 4 3 2 1 0

Big Endian byte order puts the byte whose address is “x . . . X000 at the most-
significant position in the double word (the big end). The bytes are numbered:

0 1 2 3 4 5 6 7

When operating within one computer, the byte order is often unnoticeable—
only programs that access the same locations as both, say, words and bytes, can
notice the difference. Byte order is a problem when exchanging data among com-
puters with different orderings, however. Little Endian ordering also fails to
match the normal ordering of words when strings are compared. Strings appear
“SDRAWKCAB” (backwards) in the registers.

A second memory issue is that in many computers, accesses to objects larger
than a byte must be aligned. An access to an object of size s bytes at byte address
A is aligned if A mod s = 0. Figure A.5 shows the addresses at which an access is
aligned or misaligned.

Why would someone design a computer with alignment restrictions? Mis-
alignment causes hardware complications, since the memory is typically aligned
on a multiple of a word or double-word boundary. A misaligned memory access

A-8 Appendix A Instruction Set Principles

Value of 3 low-order bits of byte address

Width of object 0 1 2 3 4 5 6 7
1 byte (byte) Aligned | Aligned | Aligned | Aligned | Aligned | Aligned | Aligned | Aligned
2 bytes (half word) Aligned Aligned Aligned Aligned

2 bytes (half word)
4 bytes (word)
4 bytes (word)

Misaligned | Misaligned ‘ Misaligned | Misaligned
Aligned | Aligned
Misaligned ‘ Misaligned

4 bytes (word) Misaligned Misaligned

4 bytes (word) Misaligned Misaligned
8 bytes (double word) Aligned

8 bytes (double word) Misaligned

8 bytes (double word)
8 bytes (double word)
8 bytes (double word)
8 bytes (double word)
8 bytes (double word)
8 bytes (double word)

Misaligned

Misaligned

Misaligned

Misaligned
Misaligned
Misaligned

Figure A.5 Aligned and misaligned addresses of byte, half-word, word, and double-word objects for byte-
addressed computers. For each misaligned example some objects require two memory accesses to complete. Every
aligned object can always complete in one memory access, as long as the memory is as wide as the object. The figure
shows the memory organized as 8 bytes wide. The byte offsets that label the columns specify the low-order 3 bits of
the address.

may, therefore, take multiple aligned memory references. Thus, even in comput-
ers that allow misaligned access, programs with aligned accesses run faster.

Even if data are aligned, supporting byte, half-word, and word accesses
requires an alignment network to align bytes, half words, and words in 64-bit
registers. For example, in Figure A.5, suppose we read a byte from an address
with its 3 low-order bits having the value 4. We will need to shift right 3 bytes to
align the byte to the proper place in a 64-bit register. Depending on the instruc-
tion, the computer may also need to sign-extend the quantity. Stores are easy:
Only the addressed bytes in memory may be altered. On some computers a byte,
half-word, and word operation does not affect the upper portion of a register.
Although all the computers discussed in this book permit byte, half-word, and
word accesses to memory, only the IBM 360/370, Intel 80x86, and VAX support
ALU operations on register operands narrower than the full width.

Now that we have discussed alternative interpretations of memory addresses,
we can discuss the ways addresses are specified by instructions, called address-
ing modes.

A7

A.7 Encoding an Instruction Set A-21

either above or below the branch. This requirement suggests a PC-relative branch
displacement of at least 8 bits. We would also expect to see register indirect and
PC-relative addressing for jump instructions to support returns as well as many
other features of current systems.

We have now completed our instruction architecture tour at the level seen by an
assembly language programmer or compiler writer. We are leaning toward a load-
store architecture with displacement, immediate, and register indirect addressing
modes. These data are 8-, 16-, 32-, and 64-bit integers and 32- and 64-bit floating-
point data. The instructions include simple operations, PC-relative conditional
branches, jump and link instructions for procedure call, and register indirect jumps
for procedure return (plus a few other uses).

Now we need to select how to represent this architecture in a form that makes
it easy for the hardware to execute.

Encoding an Instruction Set

Clearly, the choices mentioned above will affect how the instructions are encoded
into a binary representation for execution by the processor. This representation
affects not only the size of the compiled program but also the implementation of
the processor, which must decode this representation to quickly find the opera-
tion and its operands. The operation is typically specified in one field, called the
opcode. As we shall see, the important decision is how to encode the addressing
modes with the operations.

This decision depends on the range of addressing modes and the degree of
independence between opcodes and modes. Some older computers have one to
five operands with 10 addressing modes for each operand (see Figure A.6). For
such a large number of combinations, typically a separate address specifier is
needed for each operand: The address specifier tells what addressing mode is
used to access the operand. At the other extreme are load-store computers with
only one memory operand and only one or two addressing modes; obviously, in
this case, the addressing mode can be encoded as part of the opcode.

When encoding the instructions, the number of registers and the number of
addressing modes both have a significant impact on the size of instructions, as the
register field and addressing mode field may appear many times in a single
instruction. In fact, for most instructions many more bits are consumed in encod-
ing addressing modes and register fields than in specifying the opcode. The archi-
tect must balance several competing forces when encoding the instruction set:

1. The desire to have as many registers and addressing modes as possible.

2. The impact of the size of the register and addressing mode fields on the aver-
age instruction size and hence on the average program size.

3. A desire to have instructions encoded into lengths that will be easy to handle
in a pipelined implementation. (The value of easily decoded instructions is
discussed in Appendix C and Chapter 3.) As a minimum, the architect wants

A-22

Appendix A Instruction Set Principles

instructions to be in multiples of bytes, rather than an arbitrary bit length.
Many desktop and server architects have chosen to use a fixed-length instruc-
tion to gain implementation benefits while sacrificing average code size.

Figure A.18 shows three popular choices for encoding the instruction set. The
first we call variable, since it allows virtually all addressing modes to be with all
operations. This style is best when there are many addressing modes and opera-
tions. The second choice we call fixed, since it combines the operation and the
addressing mode into the opcode. Often fixed encoding will have only a single
size for all instructions; it works best when there are few addressing modes and
operations. The trade-off between variable encoding and fixed encoding is size of
programs versus ease of decoding in the processor. Variable tries to use as few
bits as possible to represent the program, but individual instructions can vary
widely in both size and the amount of work to be performed.

Let’s look at an 80x86 instruction to see an example of the variable encoding:

add EAX,1000(EBX)

Operation and | Address Address Address Address
no. of operands | specifier 1 | field 1 specifier n field n

(a) Variable (e.g., Intel 80x86, VAX)

Operation Address Address Address
field 1 field 2 field 3

(b) Fixed (e.g., Alpha, ARM, MIPS, PowerPC, SPARC, SuperH)

Operation Address Address
specifier field
Operation Address Address Address

specifier 1 specifier 2 field

Operation Address Address Address
specifier field 1 field 2

(c) Hybrid (e.g., IBM 360/370, MIPS16, Thumb, TI TMS320C54x)

Figure A.18 Three basic variations in instruction encoding: variable length, fixed
length, and hybrid. The variable format can support any number of operands, with
each address specifier determining the addressing mode and the length of the speci-
fier for that operand. It generally enables the smallest code representation, since
unused fields need not be included. The fixed format always has the same number of
operands, with the addressing modes (if options exist) specified as part of the opcode.
It generally results in the largest code size. Although the fields tend not to vary in their
location, they will be used for different purposes by different instructions. The hybrid
approach has multiple formats specified by the opcode, adding one or two fields to
specify the addressing mode and one or two fields to specify the operand address.

A.7 Encoding an Instruction Set A-23

The name add means a 32-bit integer add instruction with two operands, and this
opcode takes 1 byte. An 80x86 address specifier is 1 or 2 bytes, specifying the
source/destination register (EAX) and the addressing mode (displacement in this
case) and base register (EBX) for the second operand. This combination takes 1
byte to specify the operands. When in 32-bit mode (see Appendix K), the size of
the address field is either 1 byte or 4 bytes. Since 1000 is bigger than 28, the total
length of the instruction is

1+1+4=06bytes

The length of 80x86 instructions varies between 1 and 17 bytes. 80x86 programs
are generally smaller than the RISC architectures, which use fixed formats (see
Appendix K).

Given these two poles of instruction set design of variable and fixed, the third
alternative immediately springs to mind: Reduce the variability in size and work
of the variable architecture but provide multiple instruction lengths to reduce
code size. This hybrid approach is the third encoding alternative, and we’ll see
examples shortly.

Reduced Code Size in RISCs

As RISC computers started being used in embedded applications, the 32-bit fixed
format became a liability since cost and hence smaller code are important. In
response, several manufacturers offered a new hybrid version of their RISC
instruction sets, with both 16-bit and 32-bit instructions. The narrow instructions
support fewer operations, smaller address and immediate fields, fewer registers,
and the two-address format rather than the classic three-address format of RISC
computers. Appendix K gives two examples, the ARM Thumb and MIPS
MIPS16, which both claim a code size reduction of up to 40%.

In contrast to these instruction set extensions, IBM simply compresses its
standard instruction set and then adds hardware to decompress instructions as
they are fetched from memory on an instruction cache miss. Thus, the instruction
cache contains full 32-bit instructions, but compressed code is kept in main mem-
ory, ROMs, and the disk. The advantage of MIPS16 and Thumb is that instruc-
tion caches act as if they are about 25% larger, while IBM’s CodePack means that
compilers need not be changed to handle different instruction sets and instruction
decoding can remain simple.

CodePack starts with run-length encoding compression on any PowerPC pro-
gram and then loads the resulting compression tables in a 2 KB table on chip.
Hence, every program has its own unique encoding. To handle branches, which
are no longer to an aligned word boundary, the PowerPC creates a hash table in
memory that maps between compressed and uncompressed addresses. Like a
TLB (see Chapter 2), it caches the most recently used address maps to reduce the
number of memory accesses. IBM claims an overall performance cost of 10%,
resulting in a code size reduction of 35% to 40%.

Hitachi simply invented a RISC instruction set with a fixed 16-bit format,
called SuperH, for embedded applications (see Appendix K). It has 16 rather than

A-24

Appendix A Instruction Set Principles

A.8

32 registers to make it fit the narrower format and fewer instructions but other-
wise looks like a classic RISC architecture.

Summary: Encoding an Instruction Set

Decisions made in the components of instruction set design discussed in previous
sections determine whether the architect has the choice between variable and fixed
instruction encodings. Given the choice, the architect more interested in code size
than performance will pick variable encoding, and the one more interested in per-
formance than code size will pick fixed encoding. Appendix E gives 13 examples
of the results of architects’ choices. In Appendix C and Chapter 3, the impact of
variability on performance of the processor will be discussed further.

We have almost finished laying the groundwork for the MIPS instruction set
architecture that will be introduced in Section A.9. Before we do that, however, it
will be helpful to take a brief look at compiler technology and its effect on pro-
gram properties.

Crosscutting Issues: The Role of Compilers

Today almost all programming is done in high-level languages for desktop and
server applications. This development means that since most instructions exe-
cuted are the output of a compiler, an instruction set architecture is essentially a
compiler target. In earlier times for these applications, architectural decisions
were often made to ease assembly language programming or for a specific ker-
nel. Because the compiler will significantly affect the performance of a computer,
understanding compiler technology today is critical to designing and efficiently
implementing an instruction set.

Once it was popular to try to isolate the compiler technology and its effect on
hardware performance from the architecture and its performance, just as it was
popular to try to separate architecture from its implementation. This separation is
essentially impossible with today’s desktop compilers and computers. Architec-
tural choices affect the quality of the code that can be generated for a computer
and the complexity of building a good compiler for it, for better or for worse.

In this section, we discuss the critical goals in the instruction set primarily
from the compiler viewpoint. It starts with a review of the anatomy of current
compilers. Next we discuss how compiler technology affects the decisions of the
architect, and how the architect can make it hard or easy for the compiler to pro-
duce good code. We conclude with a review of compilers and multimedia opera-
tions, which unfortunately is a bad example of cooperation between compiler
writers and architects.

The Structure of Recent Compilers

To begin, let’s look at what optimizing compilers are like today. Figure A.19
shows the structure of recent compilers.

